Machine learning and effectiveness of financial education programs

Ginevra Buratti & Alessio D'Ignazio

Bank of Italy

International Conference on Financial Fragility and Financial education of Households and Firms - Urbino, 8-9 june 2023

Disclaimer

The views expressed in the slides are those of the presenter only and should not be attributed to the Bank of Italy or the Eurosystem.

< □ > < 同 > < 回 > < 回 > < 回 >

Financial education programs

 Households and entrepreneurs with low financial literacy make poor decisions → negative impact on both their financial welfare and that of the whole society

• The effectiveness of financial education programs may be undermined by: low participation, poor execution, suboptimal design or inappropriate audience. In this paper, we focus on the latter issue

This paper

- We study whether algorithms could improve the effectiveness of financial education programs, by identifying ex-ante the most appropriate recipients (i.e., those who need FE the most). Two steps:
- We exploit data gathered from a sample of individuals and devise an algorithm to identify appropriate recipients of FE programs
- We simulate a policy scenario. We apply the algorithm to a new group of individuals and:
 - individuate those who should be offered a financial education course (targeted individuals) and those who should not (not-targeted)
 - evaluate whether the effectiveness of a financial education course is different among these two groups

Data

Data: The financial education campaign by Edufin Committee

- We use individual data from about 3,800 individuals who participated to a financial education campaign run by Edufin Committee in 2021.
- Financial education was taught by means of three TV programs ("treatments"):
 - TV-show L'Eredita
 - soap opera Un posto al sole (UPAS)
 - ovarious media messages (Sofia)
- The campaign was paired by a randomized experiment (RCT) to assess its effectiveness: the sample was equally divided in four groups: T1 (UPAS), T2 (L'Eredita), T3 (Sofia), control group.

Data: The financial education campaign by Edufin Committee (cont.)

- All four groups of individuals were administered a questionnaire before the treatment (pre-test) and a questionnaire after the treatment (post-test)
 - The questionnaires included a series of questions on financial topics, as well as a section on individual characteristics
- Treated individuals' compliance to the RCT was assessed by asking them few questions after each TV-episode
- To incentivize individuals to participate to the RCT, a small monetary prize was provided

Data

By the way...

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Training vs hold-out sample

Sample conditionally random split: training and hold-out

Notes: units.

Financial education targeting algorithm (machine learning)

- We use training sample's pre-test data only (i.e. red parts of the above fig.)
- Set up an algorithm that predicts individuals who fail at least two out of four questions about topics covered by UPAS
- We employ machine learning (ML) tools (trees, RF), with the set of predictors being easily observable variables:

sex	age	q3_1 no. children q3_2 no. adults				
q2_1-	-q2_6 civil status	q4_1–q4_7 occupational status				
q5_1	level of education	q5_gen parents' level of education				
q24_	_1 bank account	q24_other other financial instruments				
q6	3 income band	q7_1-q7_4 area				

Results

The ML-based targeting rule (ML: tree)

Policy scenario simulation

- We apply the ML algorithm-based rule to a new set of individuals (i.e., "blue" guys)
- Very importantly, for such individuals we observe their financial literacy (measured by means of the two questionnaires) both before and after the financial education campaign
- We estimate the impact of the financial education campaign and assess whether it is different between target and not-target individuals

Treated vs Control individuals

- Despite the monetary prize, individuals assigned to treatment (i.e., watch UPAS) could fail to comply (cheating...)
- To tackles this problem we exploit data on which TV-programs people usually watch (including UPAS)
- Treated individuals: assigned to "watch UPAS" group & claim to usually watch UPAS (stricter def: & correctly answers most "check" questions)
- Control individuals: assigned to control group & claim not to usually watch UPAS

Results

Baseline results

	Full sample	ML: Ran	dom forest
		target	not targe
pa	nel (a): y = binary	(improvement) indica	ator
Type I treated	0.0709	0.135*	-0.0206
	(0.0527)	(0.0713)	(0.0744)
Observations	602	302	300
Type II treated	0.0917	0.170*	-0.00986
	(0.0638)	(0.0868)	(0.0899)
Observations	562	280	282
	panel (b): $\mathbf{y} = \mathbf{pre}$	≻post score difference	
Type I treated	0.0802	0.551*	-0.545
	(0.244)	(0.333)	(0.338)
	12	20.9	300
Observations	602	302	000
Observations Type II treated	602 0.311	0.901**	-0.415
Observations Type II treated	602 0.311 (0.295)	0.901** (0.405)	-0.415 (0.405)

Results

Robustness 1: crtls

	Full sample	ML: Rai	ndom forest
		target	not target
par	nel (a): $y = binary$ (improvement) indicat	tor
VARIABLES		target	not target
Type I treated	0.0777*	0.137**	0.0254
	(0.0456)	(0.0613)	(0.0716)
Observations	602	302	300
Type II treated	0,0632	0.142*	0.0252
	(0.0560)	(0.0751)	(0.0877)
Observations	562	280	282
	panel (b): y = pre-	post score difference	
Type I treated	0.141	0.607**	-0.323
	(0.197)	(0.270)	(0.294)
Observations	602	302	300
Type II treated	0.184	0.724**	-0.255
	(0.233)	(0.324)	(0.334)
Observations	562	280	282

Notes: Holdout sample. OLS regressions. Robust standard errors in parentheses. *** p < 0.001, ** p < 0.01, * p < 0.05. (1) control variables included: see Table 9

Additional exercises

2 Falsification test table

∃ ► < ∃ ►</p>

Conclusions

We show that ML-based targeting can improve the effectiveness of a financial education campaign by helping identify ex-ante the most appropriate recipients

This approach can be widely applied. ML targeting could apply as well to schools, teachers, students

Surther issues: transparency & external validity

A B F A B F

Thank you!

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The ML-based targeting rule (ML: tree): zoom

Falsification test results

	Full sample	ľ	ИL:	Full sample]	ML:
Ĩ:		target	not target		target	not target
	$\mathbf{y} = \mathbf{binary}$	(improv.)	indicator	y = pre-p	ost score o	lifference
T. I treat.	-0.0147	-0.0142	-0.0317	0.0850	-0.0107	0.106
	(0.0522)	(0.0728)	(0.0719)	(0.235)	(0.293)	(0.365)
Obs.	602	302	300	602	302	300
T. II treat.	0.0528	0.126	-0.0424	0.429	0.578	0.190
	(0.0639)	(0.0851)	(0.0858)	(0.293)	(0.354)	(0.446)
Obs.	562	280	282	562	280	282

Notes: Holdout sample. OLS regressions. Robust standard errors in parentheses. *** p < 0.001, ** p < 0.01, * p < 0.05.

(a)

- 31

Appendix I

100 different training vs hold-out sample splits. Results

Figure 13: Treatment effect estimates (type I treated) for target and non target groups Notes: Distribution of beta estimated on 100 random training vs holdout samples.

・ 何 ト ・ ヨ ト ・ ヨ ト

Balancing test: type I treated, ML-target

	treated		control		diff. of means	
	mean	sd	mean	sd	Ь	р
score_pre	2.528	1.695	2.531	1.659	0.003	(0.988)
big_3 mistakes	0.167	0.375	0.199	0,400	0.033	(0.523)
female	0.625	0.488	0.551	0.498	-0.074	(0.258)
older	0.472	0.503	0.352	0.478	-0.121	(0.072)
graduate	0.167	0.375	0.180	0.385	0.013	(0.796)
perm empl	0.375	0.488	0.309	0.463	-0.066	(0.304)
low income	0.264	0.444	0.270	0.445	0.006	(0.924)
fl autopere low	0.486	0.503	0.516	0.501	0.030	(0.661)
married	0.639	0.484	0.555	0.498	-0.084	(0.197)
family memb lt18	0.542	0.502	0.555	0.498	0.013	(0.846)
south islands	0.403	0.494	0.375	0.485	-0.028	(0.673)
part fe courses	0.278	0.451	0.211	0.409	-0.067	(0.260)
make ends meet diff	0.528	0.503	0.488	0.501	-0.039	(0.557)
info web	0.458	0.502	0.512	0.501	0.053	(0.427)
info fin web	0.361	0.484	0.414	0.494	0.053	(0.416)
newspapers	0.431	0.499	0.324	0.469	-0.106	(0.108)
Observations	72		256		328	67 (B) (C) (B)

Table 9: ML-targeted individuals in the holdout sample: type I treated, treated vs control balancing tests

Notes: Holdout sample, ML-targeted individuals. Letests on the equality of means for treated and control individuals, assuming unequal variances. Variables are described in Table[2] Type I treated individuals are considered. *** $p \in 0.001$, ** $p \in 0.05$

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Balancing test: type I treated, not ML-target

	treated		control		diff. of means	
	mean	sd	mean	sd	b	p
score_pre	3.789	1.094	3.644	1.288	-0.145	(0.462)
big_3_mistakes	0.105	0.311	0.076	0.266	-0.029	(0.589)
female	0.553	0.504	0.534	0.500	-0.019	(0.832)
older	0.421	0.500	0.424	0.495	0.003	(0.976)
graduate	0.579	0.500	0.547	0.499	-0.032	(0.713)
perm empl	0.474	0.506	0.479	0.501	0.005	(0.954)
low income	0.053	0.226	0.064	0.244	0.011	(0.786)
fl autoperc low	0.211	0.413	0.263	0.441	0.052	(0.477)
married	0.737	0.446	0.623	0.486	-0.114	(0.155)
family memb lt18	0.447	0.504	0.534	0.500	0.087	(0.330)
south islands	0.368	0.489	0.369	0.483	0.000	(0.998)
part fe courses	0.395	0.495	0.398	0.491	0.004	(0.967)
make ends meet diff	0.211	0.413	0.25	0.434	0.039	(0.590)
info web	0.605	0.495	0.746	0.436	0.140	(0.106)
info fin web	0.658	0.481	0.657	0.476	-0.001	(0.989)
newspapers	0.605	0.495	0.445	0.498	-0.160	(0.070)
Observations	38		236		274	0.535559.635

Table 10: Not ML-targeted individuals in the holdout sample: type I treated, treated vs control balancing tests

Notes: Holdout sample, not ML-targeted individuals. t-tests on the equality of means for treated and control individuals, assuming unequal variances. Variables are described in Table [2] Type I treated individuals are considered. *** p < 0.001, ** p < 0.01, * p < 0.05

(a)

Balancing test: type II treated, ML-target

	treated		control		diff. of means	
	mean	sd	mean	sd	b	р
score pre	2.283	1.772	2.531	1.659	0.249	(0.380)
big 3 mistakes	0.174	0.383	0.199	0.400	0.025	(0.684)
female	0.674	0.474	0.551	0.498	-0.123	(0.112)
older	0.413	0.498	0.352	0.478	-0.061	(0.441)
graduate	0.196	0.401	0.18	0.385	-0.016	(0.803)
perm empl	0.283	0.455	0.309	0.463	0.026	(0.723)
low income	0.304	0.465	0.27	0.445	-0.035	(0.640)
ff autoperc low	0.522	0.505	0.516	0.501	-0.006	(0.940)
married	0.674	0.474	0.555	0.498	-0.119	(0.124)
family memb lt18	0.500	0.506	0.555	0.498	0.055	(0.501)
south islands	0.326	0.474	0.375	0.485	0.049	(0.523)
part fe courses	0.261	0.444	0.211	0.409	-0.05	(0.480)
make ends meet diff	0.543	0.504	0.488	0.501	-0.055	(0.496)
info web	0.478	0.505	0.512	0.501	0.033	(0.680)
info fin web	0.348	0.482	0.414	0.494	0.066	(0.395)
newspapers	0.478	0.505	0.324	0.469	-0.154	(0.059)
Observations	46		256		302	33

Table 11: ML-targeted individuals in the holdout sample: type II treated, treated vs control balancing tests

Notes: Holdout sample, ML-targeted individuals. t-tests on the equality of means for treated and control individuals, assuming unequal variances. Variables are described in Table[2] Type II treated individuals are considered. $^{+++}p < 0.001$, $^{++}p < 0.01$.

э

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Balancing test: type II treated, not ML-target

	treated		control		diff. of means	
	mean	sd	mean	sd	b	р
score pre	3.708	1.197	3.644	1.288	-0.064	(0.805)
big 3 mistakes	0.125	0.338	0.076	0.266	-0.049	(0.499)
female	0.417	0.504	0.534	0.500	0.117	(0.286)
older	0.417	0.504	0.424	0.495	0.007	(0.948)
graduate	0.625	0.495	0.547	0.499	-0.078	(0.466)
perm empl	0.500	0.511	0.479	0.501	-0.021	(0.848)
low income	0.042	0.204	0.064	0.244	0.022	(0.627)
fl autoperc low	0.292	0.464	0.263	0.441	-0.029	(0.772)
married	0.708	0.464	0.623	0.486	-0.085	(0.400)
family memb lt18	0.417	0.504	0.534	0.500	0.117	(0.286)
south islands	0.542	0.509	0.369	0.483	-0.173	(0.122)
part fe courses	0.417	0.504	0.398	0.491	-0.018	(0.866)
make ends meet diff	0.250	0.442	0.25	0.434	0.000	(1.00)
info web	0.667	0.482	0.746	0.436	0.079	(0.446)
info fin web	0.708	0.464	0.657	0.476	-0.052	(0.609)
newspapers	0.542	0.509	0.445	0.498	-0.097	(0.382)
Observations	24		236		260	14

Table 12: Not ML-targeted individuals in the holdout sample: type II treated, treated vs control balancing tests

Notes: Holdout sample, not ML-targeted individuals. t-tests on the equality of means for treated and control individuals, assuming unequal variances. Variables are described in Table \tilde{Z} . Type II treated individuals are considered. *** p < 0.001, ** p < 0.01, *p < 0.05

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <